
Last updated on 28/07/2020 09:07

Business Analytics 

PROGRAMACIÓN I 

OBJECT ORIENTED PROGRAMMING



‣ Classes and instances

OBJECT ORIENTED PROGRAMMING



1. Title

Object Oriented Programming (or OOP): programming paradigm (pattern, model)

Approach to structuring programs/applications so that the data held, and the operations 

performed on that data, are bundled together into classes and accessed via objects. 

Classes can be used to represent real world entities (an employee, a product, a vehicle), but also 

abstract (financial transaction, a purchase order).

https://docs.python.org/3/tutorial/classes.html

Object Oriented Programming

https://docs.python.org/3/tutorial/classes.html


1. Title

Classes as templates used to constructed instances or examples of a class of things.

Instances have same data structure (attributes) but contain their own values.

A class should accomplish one specific purpose; it should capture only one idea. 

Classes and instances



1. Title

• Class: defines a combination of data and behavior that operates on that data. 

• A class acts as a template when creating new instances.

• Instance or object: an example of a class. 

• All instances of a class possess the same data fields/attributes but contain their own data 

values. Each instance of a class responds to the same set of requests.

• Attribute/field/instance variable: 

• The data held by an object is represented by its attributes.

• The “state” of an object at any particular moment relates to the current values held by its 

attributes.

• Method: a procedure defined within an class.

Terminology



1. Title

class nameOfClass: 

<statement 1>

<statement 2>

Class definitions, like function definitions (def statements) must be executed before ”use"

In practice, the statements inside a class definition will usually be function definitions (that we will 

call methods), but other statements are allowed, and sometimes useful

A class can be a subclass of another class (superclass), but we will see that later on.

Class definition

https://docs.python.org/3/reference/compound_stmts.html


1. Title

Class instantiation uses function notation. Just pretend that the class object is a parameterless

function that returns a new instance of the class. 

For example:

Here we (1) define a class called MyClass, with a single method f. We then (2) create an instance of

MyClass named x, and finally (3) we call the f method of the instance x

Basic instantiation

class MyClass:
"""A simple example class"""
def f(self):

return 'hello world'

x = MyClass()
x.f()



1. Title

Two instances of the same class with occupy different positions in memory

Instances and memory

x = MyClass()
x.f()

y = MyClass()

id(x)
id(y)

class MyClass:
"""A simple example class"""
def f(self):

return 'hello world' x

<MyClass>
attribute_1 = [0, 1]
attribute_1 = “hello”

id(x): 43424424234
id(y): 44303030333

y

<MyClass>
attribute_1 = [0, 1, 2 , 3]
attribute_1 = “goodbye”



1. Title

The instantiation operation (“calling” a class object) creates an empty object. 

Many classes like to create objects with instances customized to a specific initial state. 

For this purpose we define a special method named __init__(), like this:

Instantiation with __init__ (constructor)

class Complex:
def __init__(self, realpart, imagpart):

self.r = realpart
self.i = imagpart

x = Complex(3.0, -4.5)
print(x.r, x.i)

https://docs.python.org/3/reference/datamodel.html


1. Title

When a class defines an __init__() method, class instantiation automatically invokes __init__() for the 

newly-created class instance. 

Note that this __init__() method has two parameters realpart and imagpart. During instantiation, 

we are passing the arguments 3.0 and -4.5, so the object x will be created with an initial state (values 

for the instance variables)

Instantiation with __init__ (constructor)

class Complex:
def __init__(self, realpart, imagpart):

self.r = realpart
self.i = imagpart

x = Complex(3.0, -4.5)
print(x.r, x.i)

https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html


1. Title

Remember that we create classes to bundle together data and operations performed on that data

Methods are the “functions inside classes”, typically performing operations on the object

The special thing about methods is that the instance object is passed as the first argument of the 

function. 

x.f() is exactly equivalent to MyClass.f(x). 

You can have more parameters in the method, but the first one is a pointer to the instance, and the 

convention is to use the name self

Methods, and self



1. TitleSimple example

class Dog:

def __init__(self, name):
self.name = name
self.tricks = []  # creates a new empty list for each dog

def add_trick(self, trick):
self.tricks.append(trick)

d = Dog('Fido')
e = Dog('Buddy')

d.add_trick('roll over')
e.add_trick('play dead')

print(d.tricks)
# ['roll over']
print(e.tricks)
# ['play dead']



1. Title

Create a class that defines:

1. two attributes (instance variables), x and y, for the real and imaginary parts of a complex number

2. A method that returns the absolute value 𝑧 (call it abs) of the complex number. Remember:

𝑧 = 𝑥! + 𝑦!

3. Create an instance with real part 3 and imaginary part 4

4. Call the method abs and print the output

Complex number with an absolute value method


